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E. Brézin1,a and C. De Dominicis2
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Abstract. The field theory of a short range spin glass with Gaussian random interactions, is considered
near the upper critical dimension six. In the glassy phase, replica symmetry breaking is accompanied with
massless Goldstone modes, generated by the breaking of reparametrization invariance of a Parisi type
solution. Twisted boundary conditions are thus imposed at two opposite ends of the system in order to
study the size dependence of the twist free energy. A loop-expansion is performed to first order around a
twisted background. It is found, as expected but it is non trivial, that the theory does renormalize around
such backgrounds, as well as for the bulk. However two main differences appear, in comparison with simple
ferromagnetic transitions: (i) the loop expansion yields a (negative) anomaly in the size dependence of the
free energy, thereby lifting the lower critical dimension to a value greater than two (ii) the free energy
is lowered by twisting the boundary conditions. This situation is common in spin glasses, reflecting the
non-positivity of mode multiplicity in replica symmetry breaking, but its physical meaning is still unclear.

PACS. 64.70.Pf Glass transitions – 64.60.Cn Order-disorder transformations; statistical mechanics of
model systems

1 Introduction

Spontaneously broken symmetries are characterized by
the existence of several possible pure states. If one im-
poses “twisted” boundary conditions, i.e. different pure
states at two ends of the system, the free energy per unit
volume will be slightly greater than the free energy corre-
sponding to one single pure state over the whole system.

For a simple discrete symmetry, such as the Z2-
symmetry of Ising-like systems, one may consider an
(hyper)-cubic system with up spins in the z = 0 plane,
down spins in the z = L plane and for instance pe-
riodic boundary conditions in the transverse directions
x1, x2, · · ·xd−1. This will generate an interface in the sys-
tem centered around some plane z = z0 and a cost in free
energy

∆F = F↑,↓ − F↑,↑ = σLd−1 (1)

in which σ(T ) is the interfacial tension. As is well-known
the power (d−1) of L in (1) implies that the lower critical
dimension of systems with a discrete symmetry is equal to
one, i.e. there is no ordered phase unless d is greater than
one. At leading order the classical (mean field) configura-
tion for the order parameter, given the boundary condi-
tions, is a kink of hyperbolic tangent shape, interpolating
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between up and down spins. The fluctuations are given
at one-loop order by the Fredholm determinant of a one-
dimensional Schrödinger operator in a 1/cosh2(z − z0) po-
tential [2] which, as is well-known, is solvable analytically.
Every term in the loop expansion for the free energy about
mean field theory, is then proportional to Ld−1, and the
successive contributions build up the correct exponent and
amplitude for the interfacial tension σ.

For continuum spontaneously broken symmetries, the
situation about the upper critical dimension is technically
different. For an N -vector model one considers for defi-
niteness an order parameter, which is uniform along the
vector (1, 0, · · · , 0) in the z = 0 plane, and uniform but ro-
tated by an angle θ0 in the plane z = L, i.e. lying along the
vector (cos θ0, sin θ0, 0, · · · , 0). There again one expects a
cost in free energy

∆F = σ(T, θ0)Ld−2 (2)

in agreement with a lower critical dimension equal to two,
and with a “twist” energy σ(T, θ0) (or spin stiffness con-
stant) vanishing as θ2

0 for small θ0, (the ratio σ/θ2
0 is the

helicity modulus [3]). If it is quite elementary to verify
these statements within mean field theory, not difficult
also to check them in the vicinity of the lower critical di-
mension dl = 2 through the non-linear sigma model [4,5].
Near the upper critical dimension du = 4, things are not
as simple. The mean field solution is not elementary and
one may fear that the loop expansion might be difficult
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to handle. However it turns out [6] that for L large, the
analysis of fluctuations is simply perturbative and finally
explicit. It follows from this analysis that the massless
Goldstone modes give, as expected, an Ld−2 behaviour in
the twist free energy to all orders in the loop expansion.

For a spin glass the nature of the broken symmetry in
the low temperature phase is more difficult to visualize.
However within the replica approach, and Parisi’s ansatz
for the mean field solution [7], there are indeed “replicon”
massless Goldstone modes [8] (plus “anomalous” mass-
less modes). The broken symmetry at the origin of those
modes may be related to a reparametrization invariance
of the action. More specifically the mean field solution de-
pends, in the continuum limit of Parisi’s scheme of replica
symmetry breaking for the Edwards-Anderson model, of
two functions p(t) and Q(t) in which t is the continuum
labelling of the steps of breaking, Q(t) the Parisi order
parameter and p(t), the continuum limit of the size of the
successive boxes in which the n replicas are divided. The
free energy is not a separate function of Q(t) and p(t)
but depends only of Q as a function of p, leading for in-
stance to the simple “gauge choice” p(t) = t of Parisi.
The existence of massless modes may be related to this
arbitrariness [12]. However one does not see any physi-
cal “external field” which could be used to tune a given
specific gauge choice. In particular there is no a priori
connection between a twist of the boundary conditions on
the spins themselves, with that of the twist on the gauge
choice. Therefore the size dependence studied in this ar-
ticle, is not necessarily related to the usual stiffness ex-
ponent, measured in numerical simulations for instance.
The situation is somewhat reminiscent of cases such as
superfluid Helium, in which there is no physical conjugate
variable to the order parameter which one could use to fix
its phase. However if one takes two samples, they have no
reason to carry the same phase, and this phase difference
manifest itself in Josephson’s junctions for instance.

In this note we report the result of an analysis, in which
one imposes again two different schemes at two ends of
the system. In the z = 0 plane we have chosen the simple
Parisi gauge

p(t, z = 0) = t (3)

whereas in the z = L plane we have imposed

p(t, z = L) = t + h(t) (4)

in which we assume that h(t) is some given infinitesimal
function, vanishing with t, with support 0 ≤ t ≤ x̃. All
calculations have been performed to lowest order in h(t).
The mean field solution, to lowest order in h(t), provides
a linear interpolation between the two end planes, and a
free energy which is proportional to Ld−2 as for the N-
vector model. At one-loop order, in dimension d = 6 − ε
one finds after a long calculation, whose details will be re-
ported elsewhere, a free energy for the twist (3, 4) which
is proportional to Ld−2 log L. Those logarithms, which are
caused here by the absence of a mass gap to the Goldstone
modes, change drastically the situation compared with or-
dered states. They may be exponentiated in the standard

renormalization group way and yield, to first order in ε a
twist free energy which is proportional to

∆F � −τ2+εLd−2−ε/3

∫ x̃

0

dt h2(t), (5)

in which τ measures the temperature below the glassy
transition. This may be identified, up to one-loop, as an
approximation to

∆F � −
(

L

ξ

)d−2+η

. (6)

The occurence of fluctuations which modify the size de-
pendence of the mean field result, implies a renormaliza-
tion group procedure to interpret them. Therefore, con-
trary to ordered transitions, we are limited to a region
below Tc in which the correlation length ξ is large.

Since η is negative, this shows that the lower critical
dimension dc is larger than two. If the previous identifica-
tion of the −ε/3 being the one-loop approximation to the
η exponent is correct, then the lower critical dimension is
given by

dc = 2 − η(dc). (7)

However this is simply a bold extrapolation of our one-
loop result. Let us stress again that the stiffness exponent
computed here is relative to twisting the gauge choice p(z).
Unfortunately there is no physical field conjugate to p(z)
which would allow a comparison with numerical estimates.
The sign of the result is a puzzle on which we have a few
comments at the end.

2 Mean field theory

The action for the Edwards-Anderson spin glass is written
in terms of an n×n matrix Qab, in which a and b are replica
indices and

S =
∫

ddx

{∑
ab

(
1
4
(∇Qab(x))2 +

τ

2
Q2

ab +
u

12
Q4

ab

)

+
w

6

∑
abc

QabQbcQca

}
· (8)

In a Parisi replica infinite symmetry breaking scheme,
one divides the n = p0 replicas into p0/p1 boxes of size p1;
each box of size p1 is divided into p1/p2 boxes of size p2,
and so on, ad infinitum. The matrix elements Qab follow
those steps and are characterized by a correlative infinite
sequence Q0, Q1, · · ·

In the continuum limit, we are thus led to an action
which depends on two spatially varying functions p(t, z)
and Q(t, z), in which 0 < z < L and t refers to the steps
in the symmetry breaking scheme. (In the (d − 1) trans-
verse directions, periodic boundary conditions have been
imposed, and the mean field solution is independent of
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those transverse space variables.) In terms of those func-
tions the action reads

S/n =
Ld−1

4

∫ L

0

dz

[∫ 1

0

dt

{
− ∂Q

∂z

∂

∂z
(ṗQ)

+ ṗ
(τ

2
Q2 +

u

12
Q4
)}

− w

6

∫ 1

0

dtṗ(t, z)

(
p(t, z)Q3(t, z)

+ 3Q2(t, z)
∫ 1

t

dsṗ(s, z)Q(s, z)

)]
(9)

(ṗ, Q̇ denote derivatives with respect to t).
In the bulk, with non twisted boundary conditions,

this action is manifestly a function of Q(p) alone, and not
separately of Q(t) and p(t). Indeed the extrema of this
free energy are given as solutions of

A(t) = τQ +
u

3
Q3 − w

2

(
pQ2 +

∫ t

0

ds
dp

ds
Q2(s)

+2Q

∫ 1

t

ds
dp

ds
Q(s)

)
= 0. (10)

and Parisi’s solution is

Q(t) =
w

2u
p(t) for 0 < t < x1

Q(t) = Q1 for x1 < t < 1 (11)

with the Edwards-Anderson order parameter Q1 de-
fined by

τ + uQ2
1 − wQ1 = 0. (12)

With the twisted boundary conditions we obtain two
variational equations for Q(t, z) and p(t, z), which read

Q̇A +
1
4

∂

∂t

(
Q

∂2Q

∂z2

)
= 0

ṗA +
1
4

∂2

∂z2
(ṗQ) +

1
4

ṗ
∂2Q

∂z2
= 0 (13)

in which A is defined in (10).
To lowest order in the imposed twist h(t) one checks

easily that the solution is

p(t, z) =
2u

w
Q(t, z) = t +

z

L
h(t) (14)

for 0 < t < x̃ (x̃ is the end of the support of h(t) and then
the solution is the bulk one for t > x̃. To second order in
h(t) though, the bulk proportionality of p and Q is lost).

The incremental free energy, which follows from this
twisted solution (compared to the bulk one), comes purely
from the kinetic energy (since the bulk relation p(t, z) =

2u
w Q(t, z) still holds). The final mean field result is, at
lowest order in h(t),

∆Ftwist = − lim
n→0

1
n

(Zn
twisted − Zn

bulk)

= −
( w

2u

)2

Ld−2

∫ t1

0

dth(t)(h(t) + tḣ(t))

= −1
2

( w

2u

)2

Ld−2

∫ t1

0

dt h2(t). (15)

This result holds above the upper critical dimension du =
6 but, contrary to usual ordered-disorder transitions, we
shall see that the L-dependence is modified by fluctua-
tions. We now proceed to the one-loop computation.

3 One-loop fluctuations around mean field

The theory is now extended in dimension d = 6 − ε, di-
mensionally regularized, and later renormalized.

1. Consider first the Replicon sector where the fluctuation
matrix may be fully diagonalized (for a review of fluc-
tuations beyond mean field see [8]). Its continuation to
the bulk would write, in the continuum limit,

F
(R)
loop =

Ld

2

[
−
∫ 1

0

dt

2

∫ 1

t

dk

k

∂

∂k

∫ 1

t

dl

l

∂

∂l

]

×
∫

ddp

(2π)d
log
(
p2 +

g

2
(k2 + l2 − 2t2)

)
(16)

where we have used the notation

g =
w2

2u
· (17)

In (16) the first bracket comes from the multiplicity
of the replicon modes with associated eigenvalues p2 +
∆0(k, l; t) as in the argument of the logarithm

∆0(k, l; t) =
g

2
(k2 + l2 − 2t2). (18)

Under the twist (14), the above bulk result (16) is
changed in two ways. First the argument of the log-
arithm is to be replaced by

log
(

q2
T − ∂2

∂z2
+ ∆0 +

z

L
∆1

)
(19)

with

∆1 = g[kh(k) + lh(l)− 2th(t)]. (20)

In fact there is also a quadratic term (z/L)2∆2, that
has been omitted here since at one-loop it cancels
through the bulk subtraction.



74 The European Physical Journal B

Expanding now the logarithm to second order in ∆1

(in order to collect the quadratic terms in h(t)), we
obtain as twist contribution the term

Ld−1

4

∫ 1

0

dt

2

∫ 1

t

dk

k

∂

∂k

∫ 1

t

dl

l

∂

∂l

∫
dd−1qT

(2π)d−1∫ L

0

dz
z

L

∫ L

0

dz′
z′

L

(
1
π

∫ +∞

−∞
dK

sin Kz sin Kz′

q2
T + K2 + ∆0

)2

∆2
1.

(21)

In this expression boundary conditions at the two end
planes z = 0 and z = L have been taken into ac-
count; indeed the fluctuating part of the field vanishes
at those boundaries, leading to the appropriate basis
sin π mz

L with m = 1, 2, · · ·
Secondly, the twist (14) changes also the multiplicity
itself. This is taken into account via an identity ex-
pressing the reparametrization invariance under a z-
independent shift ∆0 → ∆0 +∆1. As a result the total
twist contribution is then obtained by replacing in (21)

zz′
L2 by

zz′ − 1/2(z2 + z′2)
L2

·
Performing the K-integration on the modified (21) one
obtains

∆FR
twist = −Ld−3

8

∫ 1

0

dt

2

∫ 1

t

dk

k

∂

∂k

∫ 1

t

dl

l

∂

∂l

×
∫ L

0

dz

∫ L

0

dz′
[

e−M|z−z′| − e−M(z+z′)

2M

]2

∆2
1

(22)

in which

M = q2
T + ∆0. (23)

Performing the z, z′ and finally qT integrations, to
gather poles in ε and logarithms, one obtains:

∆F
(R)
twist =

− 1
12

Ld−2Sd g2

∫ x̃

0

dt h2(t)
[
1
ε

+ log L + · · ·
]

,

(24)

with

Sd =
2

(4π)d/2Γ (d/2)
· (25)

It is a strong argument in favour of the consistency of
the calculation to see that the one-loop contribution is,
like mean-field, proportional to the integral

∫
dt h2(t).

Indeed, otherwise the fluctuations would not be renor-
malized by a simple change in the coupling constant.
In the intermediate steps this final form is far form ob-
vious. In particular it involves the unexpected identity∫ 1

0

dt

2

∫ 1

t

dk

k

∂

∂k

∫ 1

t

dl

l

∂

∂l
∆2

1(k, l; t) = g2

∫ x̃

0

dt h2(t).

(26)

2. In the Longitudinal-Anomalous (L-A) sector, the fluc-
tuation matrix can only be diagonalized by blocks [8]
(with blocks of size (R + 1) × (R + 1), R being equal
to the number of steps of replica symmetry breaking).
In the Parisi limit, in which R goes to infinity, the L-A
contribution to the bulk free energy writes [8]

F
(LA)
loop =

Ld

2

[∫ 1

0

dk

k

∂

∂k

] ∫
ddp

(2π)d
tr

× log
[
1 +

1
p2 + ∆0(k, t; t)

Bk(t, s)
]

(27)

where, again, the first bracket comes from the new mul-
tiplicity of the L-A modes. Besides we have the (t, s)
matrix

Bk(t, s) = g(Inf(t, s))[Θ(k − s)
+ kδ(k − s) + 2Θ(s − k)]ds (28)

and, as in (18)

∆0 = g(k2 − t2)/2 t < k

= 0 t ≥ k. (29)

The calculation is more involved here, but we proceed
as in the replicon sector, collecting quadratic terms in
h when performing the twist transform as in (14) or in
∆0 → ∆0 + (z/L)∆1. As above we keep only terms
quadratic in the propagator (q2

T − d2/dz2 + ∆0)−1,
higher order terms being, at one loop, ultra-violet con-
vergent. In contrast to the replicon sector (where only
the twist of ∆0 into ∆0 + (z/L)∆1 contributed) we
need here to take care of the twists over the matrix el-
ements Bk(t, s) and over the multiplicity. Altogether,
complicated expressions rearrange themselves to give

∆F
(LA)
twist =

1
6
Ld−2Sd g2

∫ x̃

0

dt h2(t)
[
1
ε

+ log L + · · ·
]

.

(30)

Notice that, at one-loop, there is no contribution in
log(τ) i.e. involving the mass wQ1 � τ (as in (12)).
The reason is that neither Q1 (i.e. x1), nor p0 = n,
fluctuate under reparametrization. Even as a correc-
tion term to the contribution in (zh/L), (z′h/L), it
would take to expand the logarithm to third order be-
fore Q1 showing up.

4 Renormalization and scaling

Before proceeding, one has to take into account the fact
that the u

12

∑
ab φ4

ab coupling is irrelevant, and “danger-
ous” since the fluctuations make it singular below dimen-
sion eight [8,9]. Indeed in a pure w

6 trφ3 theory, the one-
loop contribution has the effect of replacing u by

u → u + 12w4

∫
ddp

(2π)d

1
p4(p2 + 2τ)2

=

u + 6Sdw
4(2τ)−(1+ε/2). (31)
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We thus have for the twist free energy

∆Ftwist = − Sd

288w6
Ld−2τ2+ε

×
∫ x̃

0

dt h2(t)
[
1 − 2

3
w2

(
1
ε

+ log L

)
+ · · ·

]
(32)

(a factor Sd has been included in w2). It is now crucial to
verify that the replacement of the coupling constant and
temperature by their renormalized counterpart wR, τR

rids us of the 1/ε poles. The computation of those renor-
malizations is easily done in the paramagnetic phase. It
gives [11]

τR = τ

[
1 − 4w2

ε
+ O(w4)

]
Z

w2
R = w2

[
1 − 4w2

ε
+ O(w4)

]
Z3/2

Z =
[
1 +

2w2

3ε
+ O(w4)

]
(33)

from which follows

τ2

w6
=

τ2
R

w6
R

[
1 +

2w2
R

3ε
+ O(w4

R)
]

. (34)

The 1/ε pole is thus exactly cancelled and we end up with

∆Ftwist = − Sd

288w6
R

Ld−2τ2+ε
R

×
∫ x̃

0

dt h2(t)
[
1 − 2

3
w2

R log L + · · ·
]

. (35)

If we substitute to wR the fixed point w∗, zero of the β-
function

β(wR) = −ε

2
wR + w3

R + O(w5
R) (36)

one obtains that, to this order, the result exponentiates to

∆Ftwist = − Sd

288w6
R

τ2+ε
R Ld−2−ε/3

∫ x̃

0

dt h2(t). (37)

Introducing the usual critical exponents η and ν, whose
ε-expansions are known to be [11]

η = −1
3
ε + O(ε2) ν =

1
2

(
1 +

5
6
ε + O(ε2)

)
, (38)

one may write to this order

∆Ftwist ∼ −τ
ν(d−2+η)
R Ld−2+η. (39)

This is reasonable since it gives the final twist free energy
as a function of L/ξ to a power, which is the expected
scaling form for the ordinary order-disorder transitions:

∆Ftwist ∼ −
(

L

ξ

)d−2+η

. (40)

There are two differences though with ordinary transi-
tions.

• First the power of L/ξ is non-canonical. We thus verify,
to the order of one-loop, an extended form of scaling,
appropriate when the soft transverse modes are not
isolated, but being at the bottom of a gapless band,
they are no longer infra-red free. Consequenly the fluc-
tuations exhibit a logarithmic dependence as the size
and the propagator develops a (negative) anomaly η.
At the lower critical dimension dc, the twist free en-
ergy should vanish and thus dc should be the solution
of the equation

dc = 2 − η(dc). (41)

This same answer had been anticipated earlier on the
basis of scaling arguments applied to the null over-
lap replicon sector [10]. Using numerical estimates for
η [13],one gets from (41) a value of dc close to 2.5,
whereas a self consistent mean-field approach for the
twisted free-energy of two copies, surprisingly yields
[14] exactly 5/2.

• The sign of this twisted free energy is negative. This
will be discussed below.

5 Discussion

The calculation of fluctuations around the background of a
twisted mean field solution is renormalizable, as expected,
in spite of its spatial non-uniformity, as already checked in
the simple O(N)-model [6]. However contrary to the simple
ferromagnetic transitions, the influence of this twist on the
size dependence manifests itself by a logarithmic depen-
dence in L at one-loop which exponentiates to a negative
anomaly. This generates an increase of the lower critical
dimension.

However another difference with ferromagnetic tran-
sitions is the sign dependence of the twist on the free
energy: the twisting leads here to a decrease in the free
energy. This is not in contradiction with the principles of
thermodynamics. A similar situation could occur with an
antiferromagnet, since there as well, the free energy may
be lowered by imposing external fields of opposite signs at
two ends of the sample. In such a circumstance, one ex-
pects that the system would spontaneously breaks spatial
uniformity and develop a space dependence in the “gauge”
choice of the replica symmetry breaking. Unfortunately we
are not aware of any conjugate field to the gauge choice
p(t, z) which could be imposed to improve the mean field
starting point.

However no conclusion can really be drawn at this
stage from this negative sign. For a long time it had been
suspected that the free energy should be maximised in
the zero-replica limit. In the case of the infinite range
Sherrington-Kirkpatrick model this has now been rigor-
ously established by Guerra [16]. In our calculations, in
spite of the positivity of the Hessian eigenvalues, char-
acterizing fluctuations around mean field solution, their
multiplicities become negative in the zero-replica limit.
Therefore the free energy may be lowered by some excita-
tions, without contradicting the thermodynamic stability
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of the mean field solution. The only unambiguous result
remains the appearance of logarithmic fluctuations involv-
ing the size L of the system, which push the lower critical
dimension above two.

We have benefited from stimulating discussions with J.-P.
Bouchaud, L. Cugliandolo, S. Franz, J. Lebowitz, M. Mézard,
G. Parisi, J. Zinn-Justin.
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